Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.575
Filtrar
1.
Biosens Bioelectron ; 256: 116277, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613934

RESUMO

The field of biosensing would significantly benefit from a disruptive technology enabling flexible manufacturing of uniform electrodes. Inkjet printing holds promise for this, although realizing full electrode manufacturing with this technology remains challenging. We introduce a nitrogen-doped carboxylated graphene ink (NGA-ink) compatible with commercially available printing technologies. The water-based and additive-free NGA-ink was utilized to produce fully inkjet-printed electrodes (IPEs), which demonstrated successful electrochemical detection of the important neurotransmitter dopamine. The cost-effectiveness of NGA-ink combined with a total cost per electrode of $0.10 renders it a practical solution for customized electrode manufacturing. Furthermore, the high carboxyl group content of NGA-ink (13 wt%) presents opportunities for biomolecule immobilization, paving the way for the development of advanced state-of-the-art biosensors. This study highlights the potential of NGA inkjet-printed electrodes in revolutionizing sensor technology, offering an affordable, scalable alternative to conventional electrochemical systems.


Assuntos
Técnicas Biossensoriais , Dopamina , Técnicas Eletroquímicas , Grafite , Tinta , Impressão , Técnicas Biossensoriais/instrumentação , Grafite/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Dopamina/análise , Eletrodos , Desenho de Equipamento , Nitrogênio/química , Humanos
2.
Biosens Bioelectron ; 256: 116280, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603840

RESUMO

Monitoring biomarkers in human interstitial fluids (ISF) using microneedle sensors has been extensively studied. However, most of the previous studies were limited to simple in vitro demonstrations and lacked system integration and analytical performance. Here we report a miniaturized, high-precision, fully integrated wearable electrochemical microneedle sensing device that works with a customized smartphone application to wirelessly and in real-time monitor glucose in human ISF. A microneedle array fabrication method is proposed which enables multiple individually addressable, regionally separated sensing electrodes on a single microneedle system. As a demonstration, a glucose sensor and a differential sensor are integrated in a single sensing patch. The differential sensing electrodes can eliminate common-mode interference signals, thus significantly improving the detection accuracy. The basic mechanism of microneedle penetration into the skin was analyzed using the finite element method (FEM). By optimizing the structure of the microneedle, the puncture efficiency was improved while the puncture force was reduced. The electrochemical properties, biocompatibility, and system stability of the microneedle sensing device were characterized before human application. The test results were closely correlated with the gold standard (blood). The platform can be used not only for glucose detection, but also for various ISF biomarkers, and it expands the potential of microneedle technology in wearable sensing.


Assuntos
Técnicas Biossensoriais , Desenho de Equipamento , Líquido Extracelular , Glucose , Agulhas , Dispositivos Eletrônicos Vestíveis , Humanos , Líquido Extracelular/química , Técnicas Biossensoriais/instrumentação , Glucose/análise , Smartphone , Automonitorização da Glicemia/instrumentação , 60431
3.
Biosens Bioelectron ; 256: 116262, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621340

RESUMO

Lateral flow immunoassays (LFIAs) are an essential and widely used point-of-care test for medical diagnoses. However, commercial LFIAs still have low sensitivity and specificity. Therefore, we developed an automatic ultrasensitive dual-color enhanced LFIA (DCE-LFIA) by applying an enzyme-induced tyramide signal amplification method to a double-antibody sandwich LFIA for antigen detection. The DCE-LFIA first specifically captured horseradish peroxidase (HRP)-labeled colored microspheres at the Test line, and then deposited a large amount of tyramide-modified signals under the catalytic action of HRP to achieve the color superposition. A limit of detection (LOD) of 3.9 pg/mL and a naked-eye cut-off limit of 7.8 pg/mL were achieved for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein. Additionally, in the inactivated virus detections, LOD equivalent to chemiluminescence (0.018 TCID50/mL) was obtained, and it had excellent specificity under the interference of other respiratory viruses. High sensitivity has also been achieved for detection of influenza A, influenza B, cardiac troponin I, and human chorionic gonadotrophin using this DCE-LFIA, suggesting the assay is universally applicable. To ensure the convenience and stability in practical applications, we created an automatic device. It provides a new practical option for point-of-care test immunoassays, especially ultra trace detection and at-home testing.


Assuntos
Técnicas Biossensoriais , COVID-19 , Limite de Detecção , SARS-CoV-2 , Imunoensaio/instrumentação , Imunoensaio/métodos , Humanos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , COVID-19/virologia , Peroxidase do Rábano Silvestre/química , Troponina I/sangue , Troponina I/análise , Testes Imediatos , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/análise , Gonadotropina Coriônica/análise , Gonadotropina Coriônica/sangue , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/imunologia , Fosfoproteínas
4.
Biosens Bioelectron ; 256: 116282, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626615

RESUMO

Helicobacter pylori (H. pylori) infection correlates closely with gastric diseases such as gastritis, ulcers, and cancer, influencing more than half of the world's population. Establishing a rapid, precise, and automated platform for H. pylori diagnosis is an urgent clinical need and would significantly benefit therapeutic intervention. Recombinase polymerase amplification (RPA)-CRISPR recently emerged as a promising molecular diagnostic assay due to its rapid detection capability, high specificity, and mild reaction conditions. In this work, we adapted the RPA-CRISPR assay on a digital microfluidics (DMF) system for automated H. pylori detection and genotyping. The system can achieve multi-target parallel detection of H. pylori nucleotide conservative genes (ureB) and virulence genes (cagA and vacA) across different samples within 30 min, exhibiting a detection limit of 10 copies/rxn and no false positives. We further conducted tests on 80 clinical saliva samples and compared the results with those derived from real-time quantitative polymerase chain reaction, demonstrating 100% diagnostic sensitivity and specificity for the RPA-CRISPR/DMF method. By automating the assay process on a single chip, the DMF system can significantly reduce the usage of reagents and samples, minimize the cross-contamination effect, and shorten the reaction time, with the additional benefit of losing the chance of experiment failure/inconsistency due to manual operations. The DMF system together with the RPA-CRISPR assay can be used for early detection and genotyping of H. pylori with high sensitivity and specificity, and has the potential to become a universal molecular diagnostic platform.


Assuntos
Técnicas Biossensoriais , Técnicas de Genotipagem , Infecções por Helicobacter , Helicobacter pylori , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Humanos , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/microbiologia , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Técnicas de Genotipagem/instrumentação , Técnicas de Genotipagem/métodos , Genótipo , Proteínas de Bactérias/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Microfluídica/métodos , Antígenos de Bactérias/genética , Antígenos de Bactérias/análise , DNA Bacteriano/genética , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Recombinases/metabolismo
5.
Anal Methods ; 16(16): 2424-2443, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38592715

RESUMO

This review summarizes recent developments in amperometric biosensors, based on one-step electrodeposited organic-inorganic hybrid layers, used for analysis of low molecular weight compounds. The factors affecting self-assembly of one-step electrodeposited films, methods for verifying their composition, advantages, limitations and approaches affecting the electroanalytical performance of amperometric biosensors based on organic-inorganic hybrid layers were systemized. Moreover, issues related to the formation of one-step organic-inorganic hybrid functional layers with different structures in biosensors produced under the same electrodeposition parameters are discussed. The systemized dependencies can support the preliminary choice of functional sensing layers with architectures tuned for specific biotechnology and life science applications. Finally, the capabilities of one-step electrodeposition of organic-inorganic hybrid functional films beyond amperometric biosensors were highlighted.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Galvanoplastia/métodos , Nanoestruturas/química , Eletrodos
6.
Biosens Bioelectron ; 256: 116242, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631133

RESUMO

Psychiatric disorders are associated with serve disturbances in cognition, emotional control, and/or behavior regulation, yet few routine clinical tools are available for the real-time evaluation and early-stage diagnosis of mental health. Abnormal levels of relevant biomarkers may imply biological, neurological, and developmental dysfunctions of psychiatric patients. Exploring biosensors that can provide rapid, in-situ, and real-time monitoring of psychiatric biomarkers is therefore vital for prevention, diagnosis, treatment, and prognosis of mental disorders. Recently, psychiatric biosensors with high sensitivity, selectivity, and reproducibility have been widely developed, which are mainly based on electrochemical and optical sensing technologies. This review presented psychiatric disorders with high morbidity, disability, and mortality, followed by describing pathophysiology in a biomarker-implying manner. The latest biosensors developed for the detection of representative psychiatric biomarkers (e.g., cortisol, dopamine, and serotonin) were comprehensively summarized and compared in their sensitivities, sensing technologies, applicable biological platforms, and integrative readouts. These well-developed biosensors are promising for facilitating the clinical utility and commercialization of point-of-care diagnostics. It is anticipated that mental healthcare could be gradually improved in multiple perspectives, ranging from innovations in psychiatric biosensors in terms of biometric elements, transducing principles, and flexible readouts, to the construction of 'Big-Data' networks utilized for sharing intractable psychiatric indicators and cases.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Transtornos Mentais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Humanos , Biomarcadores/análise , Transtornos Mentais/diagnóstico , Saúde Mental , Técnicas Eletroquímicas/métodos , Dopamina/análise , Serotonina/análise , Serotonina/sangue , Serotonina/metabolismo
7.
Food Chem ; 448: 139127, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608399

RESUMO

To address the food safety issues caused by toxins, we established a fluorescent copper nanocluster biosensor based on magnetic aptamer for the visual and quantitative detection of ZEN. Specifically, we utilized the docking-aided rational tailoring (DART) strategy to analyze intermolecular force and interaction sites between zearalenone (ZEN) and the aptamer, and optimize the long-chain aptamer step by step to enhance the binding affinity by 3.4 times. The magnetic bead-modified aptamer underwent conformational changes when competing with complementary sequences to bind with ZEN. Then, the released complementary sequences will be amplified in template-free mode with the presence of the terminal deoxynucleotidyl transferase (TdT), and generating T-rich sequences as the core sequences for the luminescence of copper nanoclusters. The luminescence could be visualized and quantitatively detected through ultraviolet irradiation. The proposed label-free aptasensor exhibited high sensitivity and specificity, with a low limit of detection (LOD) of 0.1 ng/mL.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cobre , Zearalenona , Zearalenona/análise , Zearalenona/química , Cobre/química , Técnicas Biossensoriais/instrumentação , Aptâmeros de Nucleotídeos/química , Contaminação de Alimentos/análise , Limite de Detecção , Simulação de Acoplamento Molecular , Nanopartículas Metálicas/química , Fluorescência
8.
Biosens Bioelectron ; 256: 116283, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608495

RESUMO

Due to the toxicity of mercury and its harmful effects on human health, it is essential to establish a low-cost, highly sensitive and highly specific monitoring method with a wide detection range, ideally with a simple visual readout. In this study, a whole-cell biosensor with adjustable detection limits was developed for the detection of mercury ions in water samples, allowing controllable threshold detection with an expanded detection range. Gene circuits were constructed by combining the toehold switch system with lactose operon, mercury-ion-specific operon, and inducible red fluorescent protein gene. Using MATLAB for design and selection, a total of eleven dual-input single-output sensing logic circuits were obtained based on the basic logic of gene circuit construction. Then, biosensor DTS-3 was selected based on its fluorescence response at different isopropyl ß-D-Thiogalactoside (IPTG) concentrations, exhibiting the controllable detection threshold. At 5-20 µM IPTG, DTS-3 can achieve variable threshold detection in the range of 0.005-0.0075, 0.06-0.08, 1-2, and 4-6 µM mercury ion concentrations, respectively. Specificity experiments demonstrated that DTS-3 exhibits good specificity, not showing fluorescence response changes compared with other metal ions. Furthermore spiked sample experiments demonstrated its good resistance to interference, allowing it to distinguish mercury ion concentrations as low as 7.5 nM by the naked eye and 5 nM using a microplate reader. This study confirms the feasibility and performance of biosensor with controllable detection threshold, providing a new detection method and new ideas for expanding the detection range of biosensors while ensuring rapid and convenient measurements without compromising sensitivity.


Assuntos
Técnicas Biossensoriais , Mercúrio , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Mercúrio/análise , Limite de Detecção , Poluentes Químicos da Água/análise , Desenho de Equipamento , Redes Reguladoras de Genes , Humanos , Escherichia coli/genética , Escherichia coli/isolamento & purificação
9.
Elife ; 122024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393319

RESUMO

Intracellular levels of the amino acid aspartate are responsive to changes in metabolism in mammalian cells and can correspondingly alter cell function, highlighting the need for robust tools to measure aspartate abundance. However, comprehensive understanding of aspartate metabolism has been limited by the throughput, cost, and static nature of the mass spectrometry (MS)-based measurements that are typically employed to measure aspartate levels. To address these issues, we have developed a green fluorescent protein (GFP)-based sensor of aspartate (jAspSnFR3), where the fluorescence intensity corresponds to aspartate concentration. As a purified protein, the sensor has a 20-fold increase in fluorescence upon aspartate saturation, with dose-dependent fluorescence changes covering a physiologically relevant aspartate concentration range and no significant off target binding. Expressed in mammalian cell lines, sensor intensity correlated with aspartate levels measured by MS and could resolve temporal changes in intracellular aspartate from genetic, pharmacological, and nutritional manipulations. These data demonstrate the utility of jAspSnFR3 and highlight the opportunities it provides for temporally resolved and high-throughput applications of variables that affect aspartate levels.


Assuntos
Ácido Aspártico , Técnicas Biossensoriais , Animais , Ácido Aspártico/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Linhagem Celular , Proteínas de Fluorescência Verde/metabolismo , Mamíferos/metabolismo
10.
Biosensors (Basel) ; 14(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38392023

RESUMO

The design of a porous silicon (PSi) biosensor is not often documented, but is of the upmost importance to optimize its performance. In this work, the motivation behind the design choices of a PSi-based optical biosensor for the indirect detection of bacteria via their lysis is detailed. The transducer, based on a PSi membrane, was characterized and models were built to simulate the analyte diffusion, depending on the porous nanostructures, and to optimize the optical properties. Once all performances and properties were analyzed and optimized, a theoretical response was calculated. The theoretical limit of detection was computed as 104 CFU/mL, based on the noise levels of the optical setup. The experimental response was measured using 106 CFU/mL of Bacillus cereus as model strain, lysed by bacteriophage-coded endolysins PlyB221. The obtained signal matched the expected response, demonstrating the validity of our design and models.


Assuntos
Bactérias , Técnicas Biossensoriais , Silício , Técnicas Biossensoriais/instrumentação , Porosidade , Silício/química
11.
Biosensors (Basel) ; 14(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38391984

RESUMO

Field-effect transistor (FET)-based biosensors are powerful analytical tools for detecting trace-specific biomolecules in diverse sample matrices, especially in the realms of pandemics and infectious diseases. The primary concern in applying these biosensors is their stability, a factor directly impacting the accuracy and reliability of sensing over extended durations. The risk of biosensor degradation is substantial, potentially jeopardizing the sensitivity and selectivity and leading to inaccurate readings, including the possibility of false positives or negatives. This paper delves into the documented degradation of silicon nanobelt FET (NBFET) biosensors induced by buffer solutions. The results highlight a positive correlation between immersion time and the threshold voltage of NBFET devices. Secondary ion mass spectrometry analysis demonstrates a gradual increase in sodium and potassium ion concentrations within the silicon as immersion days progress. This outcome is ascribed to the nanobelt's exposure to the buffer solution during the biosensing period, enabling ion penetration from the buffer into the silicon. This study emphasizes the critical need to address buffer-solution-induced degradation to ensure the long-term stability and performance of FET-based biosensors in practical applications.


Assuntos
Técnicas Biossensoriais , Nanofios , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Nanofios/química , Reprodutibilidade dos Testes , Silício/química , Transistores Eletrônicos
12.
Biosensors (Basel) ; 13(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37622901

RESUMO

Hydrogels are considered an ideal platform for personalized healthcare due to their unique characteristics, such as their outstanding softness, appealing biocompatibility, excellent mechanical properties, etc. Owing to the high similarity between hydrogels and biological tissues, hydrogels have emerged as a promising material candidate for next generation bioelectronic interfaces. In this review, we discuss (i) the introduction of hydrogel and its traditional applications, (ii) the work principles of hydrogel in bioelectronics, (iii) the recent advances in hydrogel bioelectronics for health monitoring, and (iv) the outlook for future hydrogel bioelectronics' development.


Assuntos
Técnicas Biossensoriais , Eletrônica Médica , Hidrogéis , Técnicas Biossensoriais/instrumentação
13.
Nature ; 620(7973): 386-392, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495692

RESUMO

Transient molecules in the gastrointestinal tract such as nitric oxide and hydrogen sulfide are key signals and mediators of inflammation. Owing to their highly reactive nature and extremely short lifetime in the body, these molecules are difficult to detect. Here we develop a miniaturized device that integrates genetically engineered probiotic biosensors with a custom-designed photodetector and readout chip to track these molecules in the gastrointestinal tract. Leveraging the molecular specificity of living sensors1, we genetically encoded bacteria to respond to inflammation-associated molecules by producing luminescence. Low-power electronic readout circuits2 integrated into the device convert the light emitted by the encapsulated bacteria to a wireless signal. We demonstrate in vivo biosensor monitoring in the gastrointestinal tract of small and large animal models and the integration of all components into a sub-1.4 cm3 form factor that is compatible with ingestion and capable of supporting wireless communication. With this device, diseases such as inflammatory bowel disease could be diagnosed earlier than is currently possible, and disease progression could be more accurately tracked. The wireless detection of short-lived, disease-associated molecules with our device could also support timely communication between patients and caregivers, as well as remote personalized care.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Sulfeto de Hidrogênio , Inflamação , Óxido Nítrico , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/metabolismo , Modelos Animais , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Cápsulas/administração & dosagem , Probióticos/metabolismo , Bactérias/metabolismo , Luminescência , Progressão da Doença , Inflamação/diagnóstico , Inflamação/metabolismo , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/metabolismo , Tecnologia sem Fio/instrumentação , Administração Oral , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/métodos , Fatores de Tempo , Humanos , Tamanho Corporal
14.
J Mater Chem B ; 11(29): 6782-6801, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37377082

RESUMO

Metal-organic frameworks (MOFs) are a class of multifunctional organometallic compounds that include metal ions combined with assorted organic linkers. Recently, these compounds have received widespread attention in medicine, due to their exceptional qualities, including a wide surface area, high porosity, outstanding biocompatibility, non-toxicity, etc. Such characteristic qualities make MOFs superb candidates for biosensing, molecular imaging, drug delivery, and enhanced cancer therapies. This review illustrates the key attributes of MOFs and their importance in cancer research. The structural and synthetic aspects of MOFs are briefly discussed with primary emphasis on diagnostic and therapeutic features, as well as their performance and significance in modern therapeutic methods and synergistic theranostic strategies including biocompatibility. This review offers cumulative scrutiny of the widespread appeal of MOFs in modern-day oncological research, which may stimulate further explorations.


Assuntos
Neoplasias , Humanos , Animais , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Pesquisa Biomédica/instrumentação , Pesquisa Biomédica/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Campos Magnéticos , Temperatura
15.
Biosensors (Basel) ; 13(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37366954

RESUMO

In 2019, over 21% of an estimated 10 million new tuberculosis (TB) patients were either not diagnosed at all or diagnosed without being reported to public health authorities. It is therefore critical to develop newer and more rapid and effective point-of-care diagnostic tools to combat the global TB epidemic. PCR-based diagnostic methods such as Xpert MTB/RIF are quicker than conventional techniques, but their applicability is restricted by the need for specialized laboratory equipment and the substantial cost of scaling-up in low- and middle-income countries where the burden of TB is high. Meanwhile, loop-mediated isothermal amplification (LAMP) amplifies nucleic acids under isothermal conditions with a high efficiency, helps in the early detection and identification of infectious diseases, and can be performed without the need for sophisticated thermocycling equipment. In the present study, the LAMP assay was integrated with screen-printed carbon electrodes and a commercial potentiostat for real time cyclic voltammetry analysis (named as the LAMP-Electrochemical (EC) assay). The LAMP-EC assay was found to be highly specific to TB-causing bacteria and capable of detecting even a single copy of the Mycobacterium tuberculosis (Mtb) IS6110 DNA sequence. Overall, the LAMP-EC test developed and evaluated in the present study shows promise to become a cost-effective tool for rapid and effective diagnosis of TB.


Assuntos
Técnicas Biossensoriais , Microeletrodos , Tuberculose , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/diagnóstico , Tuberculose/microbiologia , Técnicas Biossensoriais/economia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/normas , Carbono/química , Microeletrodos/normas , Sensibilidade e Especificidade , Microscopia Eletrônica de Varredura , Reprodutibilidade dos Testes , DNA Bacteriano/análise
16.
Biotechnol J ; 18(8): e2300125, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37127933

RESUMO

Development of disposable, rapid, and convenient biosensor with high sensitivity and reliability is the most desired method of viral disease prevention. To achieve this goal, in this work, a practical impedimetric biosensor has been implemented into a disposable electrode on a screen-printed carbon electrode (SPCE) for the detection of two mosquito-borne viruses. The biosensor fabrication has step-wisely carried out on the disposable electrode surface at room temperature: starting from conductive film formation, physical binding of the gold nanoparticles (AuNPs)-polyaniline (PAni) into the conductive film, and biofunctionalization. To get the maximum efficiency of the antibody, biotinylated antibody has been conjugated on the surface of AuNP-PAni/PAni-SPCE via the streptavidin-biotin conjugation method which is a critical factor for the high sensitivity. Using the antibody-antigen interaction, this disposable electrode has designed to detect mosquito-borne infectious viruses, Chikungunya virus (CHIKV), and Zika virus (ZIKV) separately in a wide linear range of 100 fg mL-1 to 1 ng mL-1 with a low detection limit of 1.33 and 12.31 fg mL-1 , respectively.


Assuntos
Técnicas Biossensoriais , Vírus Chikungunya , Culicidae , Eletrodos , Zika virus , Animais , Técnicas Biossensoriais/instrumentação , Carbono/química , Culicidae/virologia , Ouro/química , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Zika virus/isolamento & purificação , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia , Doenças Transmitidas por Vetores/prevenção & controle , Doenças Transmitidas por Vetores/virologia , Vírus Chikungunya/isolamento & purificação , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/virologia , Limite de Detecção , Nanocompostos/química
17.
Biosens Bioelectron ; 234: 115342, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37141829

RESUMO

The early detection of very low bacterial concentrations is key to minimize the healthcare and safety issues associated with microbial infections, food poisoning or water pollution. In amperometric integrated circuits for electrochemical sensors, flicker noise is still the main bottleneck to achieve ultrasensitive detection with small footprint, cost-effective and ultra-low power instrumentation. Current strategies rely on autozeroing or chopper stabilization causing negative impacts on chip size and power consumption. This work presents a 27-µW potentiostatic-amperometric Delta-Sigma modulator able to cancel its own flicker noise and provide a 4-fold improvement in the limit of detection. The 2.3-mm2 all-in-one CMOS integrated circuit is glued to an inkjet-printed electrochemical sensor. Measurements show that the limit of detection is 15 pArms, the extended dynamic range reaches 110 dB and linearity is R2 = 0.998. The disposable device is able to detect, in less than 1h, live bacterial concentrations as low as 102 CFU/mL from a 50-µL droplet sample, which is equivalent to 5 microorganisms.


Assuntos
Bactérias , Técnicas Biossensoriais , Técnicas Biossensoriais/instrumentação , Bactérias/isolamento & purificação
18.
Sci Rep ; 13(1): 5909, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041255

RESUMO

Monitoring neuronal activity with simultaneously high spatial and temporal resolution in living cell cultures is crucial to advance understanding of the development and functioning of our brain, and to gain further insights in the origin of brain disorders. While it has been demonstrated that the quantum sensing capabilities of nitrogen-vacancy (NV) centers in diamond allow real time detection of action potentials from large neurons in marine invertebrates, quantum monitoring of mammalian neurons (presenting much smaller dimensions and thus producing much lower signal and requiring higher spatial resolution) has hitherto remained elusive. In this context, diamond nanostructuring can offer the opportunity to boost the diamond platform sensitivity to the required level. However, a comprehensive analysis of the impact of a nanostructured diamond surface on the neuronal viability and growth was lacking. Here, we pattern a single crystal diamond surface with large-scale nanopillar arrays and we successfully demonstrate growth of a network of living and functional primary mouse hippocampal neurons on it. Our study on geometrical parameters reveals preferential growth along the nanopillar grid axes with excellent physical contact between cell membrane and nanopillar apex. Our results suggest that neuron growth can be tailored on diamond nanopillars to realize a nanophotonic quantum sensing platform for wide-field and label-free neuronal activity recording with sub-cellular resolution.


Assuntos
Técnicas Biossensoriais , Diamante , Hipocampo , Nanoestruturas , Neurônios , Animais , Camundongos , Técnicas de Cultura de Células , Diamante/química , Mamíferos/anatomia & histologia , Nanoestruturas/química , Neurônios/fisiologia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Hipocampo/citologia
19.
Anal Chem ; 95(17): 6765-6768, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37079776

RESUMO

Since wood is a renewable, biodegradable naturally occurring material, the development of conductive patterns on wood substrates is a new and innovative chapter in sustainable electronics and sensors. Herein, we describe the first wooden (bio)sensing device fabricated via diode laser-induced graphitization. For this purpose, a wooden tongue depressor (WTD) is laser-treated and converted to an electrochemical multiplex biosensing device for oral fluid analysis. A low-cost laser engraver, equipped with a low-power (0.5 W) diode laser, programmably irradiates the surface of the WTD, forming two mini electrochemical cells (e-cells). The two e-cells consist of four graphite electrodes: two working electrodes, a common counter, and a common reference electrode. The two e-cells are spatially separated via programmable pen-plotting, using a commercial hydrophobic marker pen. Proof-of-principle for biosensing is demonstrated for the simultaneous determination of glucose and nitrite in artificial saliva. This wooden electrochemical biodevice is an easy-to-fabricate disposable point-of-care chip with a wide scope of applicability to other bioassays, while it paves the way for the low-cost and straightforward production of wooden electrochemical platforms.


Assuntos
Técnicas Biossensoriais , Saliva , Madeira , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Saliva/química , Gravuras e Gravação , Lasers Semicondutores , Língua , Técnicas Eletroquímicas , Eletrodos
20.
Analyst ; 148(8): 1672-1681, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36939193

RESUMO

With the development of advanced nanofabrication techniques over the past decades, different nanostructure-based plasmonic fiber-optic sensors have been developed and have presented a low limit of detection for various biomolecules. However, owing to both the dependence on complex equipment and the trade-off between the fabrication cost and sensing performance, nanostructured plasmonic fiber-optic sensors are rarely used outside laboratories. To facilitate wider application of the plasmonic fiber-optic sensors, a parylene-mediated hybrid plasmonic-photonic cavity-based sensor was developed. Compared with a similar plasmonic sensor which only works in the plasmonic mode, the proposed hybrid sensor shows a higher reproducibility (CV < 2.5%) due to its resistance to fabrication variations. Meanwhile, a self-referenced detection mechanism and a novel miniaturized system were developed to adapt to the hybrid resonance sensor. The entire system only has a weight of 263 g, and a size of 12 cm × 10 cm × 8 cm, and is especially suitable for outdoor applications in a handheld manner. In experiments, a high refractive index sensitivity of 3.148 RIU-1 and real-time biomolecule monitoring at nanomolar concentrations were achieved by the proposed system, further confirming the potential of the miniaturized system as a candidate for point-of-care health diagnostics outside laboratories.


Assuntos
Técnicas Biossensoriais , Tecnologia de Fibra Óptica , Tecnologia de Fibra Óptica/instrumentação , Técnicas Biossensoriais/instrumentação , Reprodutibilidade dos Testes , Ouro , Nanopartículas Metálicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...